• Users Online: 346
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 7  |  Issue : 1  |  Page : 8-10

Comparative evaluation of biofilm formation among three differently treated surface on titanium samples


1 Reader, Department of Prosthodontcs, Noorul Islam College Of Dental Science, Neyyatinkara, Kerala, India
2 Reader, Department of Prosthodontics, Sri Sankara Dental College, Akathumuri, Varkala, Kerala, India
3 Senior Lecturer, Department of Prosthodontics, Sri Sankara Dental College, Akathumuri, Varkala, Kerala, India
4 Assistant Professor, Department of Periodontics, PMS College of Dental Science And Research, Vattapara, Thiruvananthapuram, Kerala, India
5 Senior Lecturer, Department of Periodontics And Oral Implantology, PMS College of Dental Science And Research, Vattapara, Thiruvananthapuram, Kerala, India

Correspondence Address:
R Arun
Department of Prosthodontics, Noorul Islam College of Dental Science, Neyyatinkara, Thiruvananthapuram, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/INPC.INPC_56_19

Rights and Permissions

Background: Use of osseointegrated oral implants has been an excellent method for replacement of missing teeth. Biofilm formation on oral implants can cause inflammation of peri-implant tissues, which can affect the long-term success of osseointegrated implants. Aims and Objectives: Comparative evaluation of biofilm formation among three differently treated surface on titanium samples Methodology: Samples were blasted and later loaded with gentamicin drug by vacuum drying and evaluation of the strains was done for biofilm. Bacterial adhesion was evaluated on time intervals of 0 h, 1 h, 4 h 24 h, and 48 h. Results: Bacterial adhesion was sequentially increasing in polished samples. Initial bacterial adhesion was more on surface modified samples when compared to polished samples in the 1st h. Bacterial adhesion was retarded in gentamicin-coated hydroxyapatite (HA)-blasted samples up to 24 h. Bacterial adhesion was considerably less on TiO2-blasted samples up to 48 h. Conclusion: Implant surface modified with TiO2and gentamicin showed delayed biofilm formation even up to 48 h. Surface modification with HA has gained considerable osteoconductive surface which is a boon for the production of future implants with less expense; however, further studies are to be carried out to prove its efficacy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed687    
    Printed61    
    Emailed0    
    PDF Downloaded122    
    Comments [Add]    

Recommend this journal