• Users Online: 349
  • Print this page
  • Email this page


 
 
Table of Contents
ORIGINAL ARTICLE
Year : 2020  |  Volume : 7  |  Issue : 1  |  Page : 8-10

Comparative evaluation of biofilm formation among three differently treated surface on titanium samples


1 Reader, Department of Prosthodontcs, Noorul Islam College Of Dental Science, Neyyatinkara, Kerala, India
2 Reader, Department of Prosthodontics, Sri Sankara Dental College, Akathumuri, Varkala, Kerala, India
3 Senior Lecturer, Department of Prosthodontics, Sri Sankara Dental College, Akathumuri, Varkala, Kerala, India
4 Assistant Professor, Department of Periodontics, PMS College of Dental Science And Research, Vattapara, Thiruvananthapuram, Kerala, India
5 Senior Lecturer, Department of Periodontics And Oral Implantology, PMS College of Dental Science And Research, Vattapara, Thiruvananthapuram, Kerala, India

Date of Submission25-Nov-2019
Date of Acceptance27-Nov-2019
Date of Web Publication13-Jan-2020

Correspondence Address:
R Arun
Department of Prosthodontics, Noorul Islam College of Dental Science, Neyyatinkara, Thiruvananthapuram, Kerala
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/INPC.INPC_56_19

Rights and Permissions
  Abstract 


Background: Use of osseointegrated oral implants has been an excellent method for replacement of missing teeth. Biofilm formation on oral implants can cause inflammation of peri-implant tissues, which can affect the long-term success of osseointegrated implants.
Aims and Objectives: Comparative evaluation of biofilm formation among three differently treated surface on titanium samples
Methodology: Samples were blasted and later loaded with gentamicin drug by vacuum drying and evaluation of the strains was done for biofilm. Bacterial adhesion was evaluated on time intervals of 0 h, 1 h, 4 h 24 h, and 48 h.
Results: Bacterial adhesion was sequentially increasing in polished samples. Initial bacterial adhesion was more on surface modified samples when compared to polished samples in the 1st h. Bacterial adhesion was retarded in gentamicin-coated hydroxyapatite (HA)-blasted samples up to 24 h. Bacterial adhesion was considerably less on TiO2-blasted samples up to 48 h.
Conclusion: Implant surface modified with TiO2and gentamicin showed delayed biofilm formation even up to 48 h. Surface modification with HA has gained considerable osteoconductive surface which is a boon for the production of future implants with less expense; however, further studies are to be carried out to prove its efficacy.

Keywords: Biofilm, dental implants, gentamicin, titanium alloy samples


How to cite this article:
Arun R, Rajan NS, George NE, Chandrathara T K, Krishnan R H, Gayathri S. Comparative evaluation of biofilm formation among three differently treated surface on titanium samples. Int J Prev Clin Dent Res 2020;7:8-10

How to cite this URL:
Arun R, Rajan NS, George NE, Chandrathara T K, Krishnan R H, Gayathri S. Comparative evaluation of biofilm formation among three differently treated surface on titanium samples. Int J Prev Clin Dent Res [serial online] 2020 [cited 2020 Aug 14];7:8-10. Available from: http://www.ijpcdr.org/text.asp?2020/7/1/8/275691




  Introduction Top


The use of dental implants has become a routine procedure in dentistry to replace one or more missing teeth. However, there is also evidence of chronic inflammation, in the range of 8.6%–9.7%, in soft- and hard-tissue neighboring implants[1],[2] and is commonly observed about 10 years after implantation. These pathologic conditions termed “mucositis” and “peri-implantitis,” are considered major complications in dental implantology.[3] Antibiotic-loaded implant coatings are employed for the prevention of implant-associated infections. Gentamicin is an aminoglycoside antibiotic used to treat many types of bacterial infection.[4] It is active against wide range of bacterial infection mostly Gram-negative bacteria such as the Pseudomonas and Proteus and Gram-positive bacteria such as Streptococcus and Staphylococcus. Hence, this study is a novel approach to evaluate the influence of biofilm formation on surface-modified implants with and without coating of gentamicin.[5]

Aim

The aim of the study is to evaluate the biofilm formation on gentamicin-treated implants.

Objectives

Comparative evaluation of biofilm formation among three differently gentamicin-treated surface on titanium samples.


  Methodology Top


Commercially available Ti6Al4V (ASTMF11O8, MANHER METAL SUPPLY CORPORATION, Mumbai, India) was machined to 2 mm thickness and 2 cm × 1.5 cm length and breadth rectangular samples. These discs were mechanically polished by silicon carbide papers of grit size 240 and 600 in the grinder and polisher. Hydroxyapatite (HA) powder was prepared in house by a wet precipitation technique using (No3)2-4H2O (calcium nitrate) and NH4H2 PO4 (ammonium dihydrogen phosphate. Each sample was blasted for 2, 4, and 6 min. Five samples of each particle size, distance, and time was blasted. The same procedure was carried out for TiO2 also. The samples were vacuumed for 15 min at 200 mbar. Titanium samples (5 samples of each group) were transferred into Eppendorf tubes containing 1 ml Streptococcus sanguis cultures. Bacterial concentration was about 109 ufc/ml. They were incubated for 0, 1, 4, 24, and 48 h at 37°C. The viable count was plotted against roughness and plain samples.


  Results Top


Data were analyzed by SPSS software 16.0 version. Analysis of variance was applied for comparing between the groups. Post hoc test followed by Dunnet t-test was used to find the significant difference at 95% confidence interval. P < 0.05 between the groups considered statistically significant. [Table 1] shows number of viable organisms in plain polished titanium + gentamicin. [Table 2] shows number of viable organisms in HA blasted and [Table 3] shows number of viable organisms in TiO2.
Table 1: Number of viable organisms in plain polished titanium + gentamicin

Click here to view
Table 2: Number of viable organisms in hydroxyapatite blasted

Click here to view
Table 3: Number of viable organisms in TiO2 blasted

Click here to view



  Discussion Top


Gentamicin loaded on TiO2 surface showed low concentrations of biofilm formation among all the other groups. The success rates obtained with dental implants depend on the volume and quality of the bone. It is often difficult to obtain implant anchorage when the density of bone is less.[6] A S. sanguis strain was used to evaluate the biofilm formation since Streptococcus was the predominant initial colonizing microbes.[7],[8] The SEM analysis and EDAX report of samples showed surface roughness and sufficiently adhered elements calcium and phosphorous on HA-blasted samples. The scanning electron microscopy (SEM) results showed surface that gentamicin loaded on TiO2 surface showed low concentrations of biofilm formation among all the other groups. It is noticed within 1 h biofilm formation was on plain polished surface. However, biofilm formation was delayed more than 1 h on plain polished gentamicin-loaded samples. In contrast, the biofilm formation was delayed on TiO2-blasted surface even up to 48 h. In contrast, in HA-treated implants, it was delayed only up to 4 h.


  Conclusion Top


It can be concluded that implant surface-modified gentamicin showed delayed biofilm formation even up to 48 h. These implants can retard the plaque formation thus prevents peri-implantitis in the primary healing stage. This, in turn, can prevent the failure of implants. This is ideal in situ ations where the patient is having poor bone quality, poor oral hygiene, and in patients suffering from debilitating disease. Surface modification with HA has gained considerable osteoconductive surface which is a boon for the production of future implants with less expense; however, further studies are to be carried out to prove its efficacy.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, et al. Roughness response genes in osteoblasts. Bone 2004;35:124-33.  Back to cited text no. 1
    
2.
Ivanoff CJ, Hallgren C, Widmark G, Sennerby L, Wennerberg A. Histologic evaluation of the bone integration of TiO (2) blasted and turned titanium microimplants in humans. Clin Oral Implants Res 2001;12:128-34.  Back to cited text no. 2
    
3.
Astrand P, Engquist B, Dahlgren S, Engquist E, Feldmann H, Gröndahl K. Astra Tech and brånemark system implants: A prospective 5-year comparative study. Results after one year. Clin Implant Dent Relat Res 1999;1:17-26.  Back to cited text no. 3
    
4.
Dige I, Nyengaard JR, Kilian M, Nyvad B. Application of stereological principles for quantification of bacteria in intact dental biofilms. Oral Microbiol Immunol 2009;24:69-75.  Back to cited text no. 4
    
5.
Lee KH, Maiden MF, Tanner AC, Weber HP. Microbiota of successful osseointegrated dental implants. J Periodontol 1999;70:131-8.  Back to cited text no. 5
    
6.
Auschill TM, Hellwig E, Sculean A, Hein N, Arweiler NB. Impact of the intraoral location on the rate of biofilm growth. Clin Oral Investig 2004;8:97-101.  Back to cited text no. 6
    
7.
de Groot K, Wolke JG, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H 1998;212:137-47.  Back to cited text no. 7
    
8.
Slack R, Tindall A, Shetty AA, James KD, Rand C. 15-year follow-up results of the hydroxyapatite ceramic-coated femoral stem. J Orthop Surg (Hong Kong) 2006;14:151-4.  Back to cited text no. 8
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
   Abstract
  Introduction
  Methodology
  Results
  Discussion
  Conclusion
   References
   Article Tables

 Article Access Statistics
    Viewed688    
    Printed61    
    Emailed0    
    PDF Downloaded122    
    Comments [Add]    

Recommend this journal